

Point B is $(-1 / 3,19 / 3)$. Find the equation of this function.

Solution:

We know that we can only add/ subtract absolute values of linear functions to get this graph.
The equation should be in form of $|a x+b|$ added with other absolute linear functions.
The graph above has 3 corners. A rule about add absolute linear functions is that the number of corners in the graph is the same as the number of absolute value expression.

For example, $|a x+b| \pm|c x+d|$ will have 2 corners. As we need 3 corners, we know that we are going to need 3 expressions. $|a x+b| \pm|c x+d| \pm|e x+f|$

From the graph we know that the function is constant at large or small x values. That means the x needs to cancel out at large or small values. This leaves us with $a \pm c \pm e=0$, that gives us 2 cases:

$$
\begin{aligned}
& a-c-e=0 \\
& a+c-e=0
\end{aligned}
$$

All the signs cannot be plus as that would not make the x cancel out.
Let's analyse both cases.
Case 1: $f(x)=|a x+b|+|c x+d|-|(a+c) x+f|$
For large X positives, this simplifies to $f(x)=b+d-f$
And to match the graph $b+d-f=1 \Rightarrow f=b+d-1$

Case 2: $f(x)=|a x+b|-|c x+d|-|(a+c) x+f|$
If we do the same thing as Case 1 then we see here: $f=b-d-1$
We can put the graphs of desmos with random positive values for the constants and see which case matches out graph more. https://www.desmos.com/calculator/6brxksb5vc

Here the blue graph is case 1 and we see it has an upward pointing corner and that's what we need.
Therefore the equations will be: $f(x)=|a x+b|-|c x+d|-|(a+c) x+(b+d-1)|$
So now we have filtered out which signs to use. But now we need to find the corners at x values $-4,-1 / 3$ and 1 .

To get a corner at x equals to some constant. The absolute expression should be equal to 0 . Meaning

$$
\begin{gathered}
a x+b=0, \text { when } x=-4 \\
c x+b=0, \text { when } x=-1 \\
(a+c) x+(b+d-1)=0, \text { when } x=-1 / 3
\end{gathered}
$$

This gives us a system of equation:

$$
\left\{\begin{array}{c}
a(-4)+b=0 \\
c(-1)+b=0 \\
-\frac{1}{3}(a+c)+b=d-1=0
\end{array}\right.
$$

With some simple substitution we can determine that $b=4 a$ and $d=-c$
We know that $b-4 a=0$ and that $b=4 a$ This leaves us with only once solution: $a=1 ; b=4$ Let's substitute this in the equation:

$$
f(x)=|1 x+4|-|c x+d|-|(a+c) x+(b+d-1)|
$$

We also know that $d=-c$. Let's substitute this also in the equation.

$$
f(x)=|1 x+4|-|c x+(-c)|-|(a+c) x+(b+(-c)-1)|
$$

That leaves us with only one constant to find. We can plug this equation in desmos and add a slider for c . We need the function to pass through point B . Using trail and error $\mathrm{C}=2$.

And the function for the graph is:

$$
f(x)=|1 x+4|-|c x+(-2)|-|(a+2) x+(b+(-2)-1)|
$$

In desmos: https://www.desmos.com/calculator/oz9ukfivxx

